事实证明,无需掌握艰深的数据科学,我们同样能够在机器学习的世界中徜徉。当然,这段旅程不可避免地需要借助各类大数据、人工智能、深度学习与规模化统计与分析工具的帮助。

澳门新葡萄京所有网站 1

澳门新葡萄京所有网站 2

在今天的文章中,我们将共同了解三款最具人气的Python机器学习库,相信能够帮助大家带来更为顺利的数据科学探索体验。

近年来,Python
在数据科学行业扮演着越来越重要的角色。因此,我根据近来的使用体验,在本文中列出了对数据科学家、工程师们最有用的那些库。

1、Theano

由于这些库都开源了,我们从Github上引入了提交数,贡献者数和其他指标,这可以作为库流行程度的参考指标。

澳门新葡萄京所有网站 3

核心库

约十年前诞生的机器学习方案Theano,是目前机器学习领域使用范围最广的CPU与GPU数学编译器之一。

  1. NumPy (提交数: 15980, 贡献者数: 522)

在《Theano:用于快速实现数学表达计算的Python框架》这篇论文当中,作者对这套库进行了全面的概述。“Theano包含多款软件包,用以强化自身功能。能提供高水平用户界面,足以处理多种特定目标,”论文解释称:“其中的Lasagne与Keras能够有效简化深度学习模型以及作为数学表达式的训练算法的架构表达。事实上,概率编程框架PyMC3就在利用Theano以自动生成表达式并快速执行所生成的C代码。(Keras与Lasagne同时运行在TensorFLow与Theano之上。)。”

当开始处理Python中的科学任务,Python的SciPy
Stack肯定可以提供帮助,它是专门为Python中科学计算而设计的软件集合(不要混淆SciPy库,它是SciPy
Stack的一部分,和SciPy Stack的社区)这样我们开始来看一下吧。然而,SciPy
Stack相当庞大,其中有十几个库,我们把焦点放在核心包上(特别是最重要的)。

Theano目前在GitHub上拥有超过2万5千项提交成果以及近300名贡献者,fork次数将接近2千次。

关于建立科学计算栈,最基本的包是Numpy(全称为Numerical
Python)。它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。

2、TensorFlow

2. SciPy (提交数: 17213, 贡献者数: 489)

TensorFlow是一套利用数据流图形进行数值计算的开源库。尽管只是开源领域的一名新兵,但这一由谷歌公司牵头的项目已经拥有近1万5千条提交成果以及超过600名GitHub贡献者,模型库的星评更是逼近1万2千颗。

SciPy是一个工程和科学软件库。雷锋网再次提醒,你需要理解SciPy
Stack和SciPy库之间的区别。

澳门新葡萄京所有网站 4

SciPy包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,从而它的数组大量的使用了NumPy的。它通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。SciPy的所有子模块中的功能都有详细的说明
——又是一个SciPy非常有帮助的点。

在第一份《开源年鉴》当中,TensorFlow被选为2016年最值得fork项目。而在最新的《开源年鉴》内,TensorFlow同样多次亮相。基于TensorFlow的Magenta项目甚至在尝试将机器智能同艺术领域加以联系,探索如何利用它来实现音乐与艺术创作,并由此建立起以艺术家、程序员以及机器学习研究者的混合型社区。另外,Tensorflow支持多种前端语言,但对Python的支持是最好的,Python还被列入2017年热门编程趋势排行。

3. Pandas (提交数: 15089, 贡献者数:762)

TensorFlow
1.0于今年2月中旬推出。谷歌在其开发者博客中写道:“尽管刚刚诞生一年,但TensorFlow已经切实帮助研究人员、工程师、艺术家、学生以及其他各类用户完成各类工作,它范畴涵盖语言翻译、皮肤癌早期诊断乃至糖尿病患者并发性失明预防等领域等”。

Pandas是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。Pandas是数据整理的完美工具。它设计用于快速简单的数据操作,聚合和可视化。

3、scikit-learn

库中有两个主要的数据结构:

这套方案立足于NumPy、SciPy以及Matplotlib,并被Spotfiy公司的工程师们用于进行音乐推荐。而在OkCupid公司,是负责对匹配系统进行评估与改进。在Birchbox公司,工作人员正在摸索如何利用scikit-learn支持新产品的开发。

澳门新葡萄京所有网站 5

澳门新葡萄京所有网站 6

Scikit-learn目前在GitHub上拥有近2万2千条提交成果与800名贡献者。

  • “数据帧”(Data Frames),二维

稿源:51CTO大本营

澳门新葡萄京所有网站 7

例如,当您要从这两种类型的结构中接收到一个新的Dataframe时,通过传递一个Series,您将收到一个单独的行到DataFrame的DF:

澳门新葡萄京所有网站 8

这里稍微列出了你可以用Pandas做的事情:

  • 轻松删除并添加数据帧(DataFrame)中的列
  • 将数据结构转换为数据帧(DataFrame)对象
  • 处理丢失的数据,表示为NaN
  • 功能强大的分组

Google趋势记录

澳门新葡萄京所有网站 9

trends.google.com

GitHub请求历史记录

澳门新葡萄京所有网站 10

datascience.com/trends

可视化

4.Matplotlib (提交数: 21754, 贡献者数: 588)

又一个SciPy Stack核心软件包以及
Python库,Matplotlib为轻松生成简单而强大的可视化而量身定制。它是一个顶尖的软件(在NumPy,SciPy和Pandas的帮助下),它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。

然而,这个库是低层级的,这意味着你需要编写更多的代码才能达到高级的可视化效果,而且通常会比使用更多的高级工具付出更多的努力,但总体上这些努力是值得的。

只要付出一点你就可以做任何可视化:

  • 线图
  • 散点图
  • 条形图和直方图
  • 饼状图;
  • 茎图
  • 轮廓图
  • 场图
  • 频谱图

还有使用Matplotlib创建标签,网格,图例和许多其他格式化实体的功能。基本上,一切都是可定制的。

该库由不同的平台支持,并使用不同的GUI套件来描述所得到的可视化。不同的IDE(如IPython)都支持Matplotlib的功能。

还有一些额外的库可以使可视化变得更加容易。

澳门新葡萄京所有网站 11

5. Seaborn (提交数: 1699, 贡献者数: 71)

Seaborn主要关注统计模型的可视化;这种可视化包括热图,这些热图(heat
map)总结数据但仍描绘整体分布。Seaborn基于Matplotlib,并高度依赖于此。

澳门新葡萄京所有网站 12

6. Bokeh (提交数: 15724, 贡献者数: 223)

另一个很不错的可视化库是Bokeh,它针对交互式可视化。与以前的库相比,它独立于Matplotlib。正如我们提到的,Bokeh的主要焦点是交互性,它通过现代浏览器以数据驱动文档(d3.js)的风格呈现。

澳门新葡萄京所有网站 13

7. Plotly (提交数: 2486, 贡献者数: 33)

最后,关于Plotly的话。它是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。在plot.ly网站上有一些强大的、上手即用的图形。为了使用Plotly,你将需要设置API密钥。图形将在服务器端处理,并发布到互联网,但有一种方法可以避免。

澳门新葡萄京所有网站 14

Google趋势记录

澳门新葡萄京所有网站 15

trends.google.com

GitHub请求历史记录

澳门新葡萄京所有网站 16

datascience.com/trends

机器学习

8. SciKit-Learn (提交数:21793, 贡献者数:842)

Scikits是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。对于机器学习辅助,scikit-learn是所有软件包里最突出的一个。它建立在SciPy之上,并大量利用它的数学运算。

scikit-learn给常见的机器学习算法公开了一个简洁、一致的接口,可简单地将机器学习带入生产系统中。该库中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。

深度学习—— Keras / TensorFlow / Theano

在深度学习方面,Python中最着名和最便的库之一是Keras,它可以在TensorFlow或Theano框架上运行。让我们来看一下它们的一些细节。

9.Theano. (提交数:25870, 贡献者数:300)

首先让我们谈谈Theano。

Theano是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。最初由蒙特利尔大学机器学习组开发,它主要用于满足机器学习的需求。

值得注意的是,Theano紧密结合了NumPy在低层次上的运算
。另外,该库还优化了GPU和CPU的使用,使数据密集型的计算平台性能更佳。

效率和稳定性微调保证了即使在数值很小的情况下,仍有更精确的结果,例如,即使只给出x的最小值,log(1

  • x)仍能计算出合理的结果。

10. TensorFlow. (提交数: 16785,贡献者数: 795)

TensorFlow来自Google的开发人员,它是数据流图计算的开源库,为机器学习不断打磨。它旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者。然而,TensorFlow并不限制于谷歌的科学应用范围
– 它可以通用于多种多样的现实应用中。

TensorFlow的关键特征是它的多层节点系统,可以在大型数据集上快速训练神经网络。这为谷歌的语音识别和图像对象识别提供了支持。

11. Keras. (提交数: 3519,贡献者数: 428)

最后我们来看看Keras。它是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。Keras使用Theano或TensorFlow作为后端,但微软现在正努力整合CNTK(微软的认知工具包)作为新的后端。

设计中的简约方法旨在通过建立紧凑型系统进行快速、简便的实验。

Keras真的容易上手,并在持续完善它的快速原型能力。它完全用Python编写,可被高度模块化和扩展。尽管它以易上手、简单和以高层次为导向,但是Keras足够有深度并且足够强大,去支持复杂的模型。

谷歌发展趋势历史

澳门新葡萄京所有网站 17

trends.google.com

GitHub请求历史记录

澳门新葡萄京所有网站 18

datascience.com/trends

自然语言处理

12. NLTK (提交数: 12449,贡献者数: 196)

这个库的名称“Natural Language
Toolkit”,代表自然语言工具包,顾名思义,它用于符号学和统计学自然语言处理(NLP)
的常见任务。
NLTK旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究,目前受到重点关注。

NLTK的功能允许很多操作,例如文本标记,分类和标记,实体名称识别,建立语料库,可以显示语言内部和各句子间的依赖性、词根、语义推理等。所有的构建模块都可以为不同的任务构建复杂的研究系统,例如情绪分析,自动总结。

13. Gensim (提交数: 2878,贡献者数: 179)

它是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计的,所以不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。Gensim高效也易于使用。

Gensim旨在与原始和非结构化的数字文本一起使用。 它实现了诸如hierarchical
Dirichlet
processes(HDP),潜在语义分析(LSA)和潜在Dirichlet分配(LDA)之类的算法,以及tf-idf,随机预测,word2vec和document2vec,便于检查一组文档中有重复模式的文本
(通常称为语料库)。所有的算法均是无监督的,意味着不需要任何参数,唯一的输入只有语料库。

谷歌发展趋势历史

澳门新葡萄京所有网站 19

trends.google.com

GitHub请求历史记录

澳门新葡萄京所有网站 20

datascience.com/trends

数据挖掘,统计学

14. Scrapy (提交数: 6325,贡献者数: 243)

Scrapy库是用于从网络结构化检索数据(如联系人信息或URL),可以用来设计crawling程序(也称为蜘蛛bots)。

它是开源的,使用用Python编写的。最开始只是如它的名字暗示的一样,只用来做scraping,但是它现在已经在完整的框架中发展,能够从API采集数据并作为通用的crawlers了。

该库在界面设计中标榜着“不要重复自己”
它推荐用户们编写泛化得到、可被重复使用的通用代码,从而构建和扩展大型的crawlers。

Scrapy的架构围绕着Spider class构建,这其中包含了crawler追从的一套指令。

15. Statsmodels (提交数: 8960,贡献者数: 119)

你可能从名字就猜出大概了,statsmodels使用户能够通过使用各种统计模型的估算方法进行数据挖掘,并执行统计判断和分析。

许多有用的特征是可被描述的,并通过使用线性回归模型,广义线性模型,离散选择模型,鲁棒线性模型,时间序列分析模型,各种估计方法得出统计结果。

这个库还提供了广泛的标定功能,专门用于大数据统计中的性能优化工作。

总结

许多数据科学家和工程师认为这些库是顶级的,并值得关注,或者需要或多或少了解它们。
以下是每个库在Github上的详细统计资料:

当然,这不是完全详尽的列表,还有许多其他的库和框架也是值得关注。一个很好的例子是SciKit的不同软件包各自专注一个特定的领域,如SciKit-Image是用于处理图像的。

【编辑推荐】