据Technologyreview报道,今年年初,人工智能(AI)科学家塞巴斯蒂安·特隆(Sebastian
Thrun)与其斯坦福大学的同事们进行演示,证明“深度学习”算法能够诊断潜在的癌变皮肤病变,准确性与获得资格认证的皮肤科医生不相上下。《自然》杂志报道称,癌症发现是今年一系列报道的重要部分,为我们进入“软件诊断”的新时代提供了早期预见。

作者:田文琦 班级:1402019 学号:14020199019

原文出处:腾讯科技

澳门新葡萄京官网注册 1

澳门新葡萄京官网注册 ,【嵌牛导读】:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

澳门新葡萄京官网注册 2

在这个新时代,AI不仅可帮助医生诊断疾病,甚至还能与人类医生竞争。专家们称,照片、X光片、核磁共振成像等医疗图像可与深度学习软件的优势进行近乎完美的匹配。在最近几年中,深度学习软件在识别图片中的面孔和物体方面取得突破性进展。

【嵌牛鼻子】:人工智能的医疗应用

如果有一天,你突然发现身上的一颗痣变得有些奇怪,你会怎么做?虽然这可能是一个危险的信号,但很多人因为工作忙、去医院不便等种种原因,往往不会及时去检查。现在,人工智能为这个问题提供了更好的解决方案:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

许多公司已经意识到这个机遇。2016年12月份,谷歌母公司Alphabet旗下生命科学子公司Verily联手尼康公司,共同开发能够发现糖尿病患者致盲原因的算法。与此同时,放射学领域又被称为“医学硅谷”,因为它可以产生大量包括诸多细节的图片。

【嵌牛提问】:人工智能对现代癌症诊断有什么帮助?

斯坦福大学一个联合研究团队开发出了一个皮肤癌诊断准确率媲美人类医生的人工智能,相关成果刊发为了1月底《自然》杂志的封面论文,题为《达到皮肤科医生水平的皮肤癌筛查深度神经网络》(Dermatologist-level
classification of skin cancer with deep neural
networks)。他们通过深度学习的方法,用近13万张痣、皮疹和其他皮肤病变的图像训练机器识别其中的皮肤癌症状,在与21位皮肤科医生的诊断结果进行对比后,他们发现这个深度神经网络的诊断准确率与人类医生不相上下,在91%以上。

黑箱子医疗

【嵌牛正文】:

深度学习为医学添砖加瓦

虽然特隆团队的预测非常精确,但依然没人能够确定深度学习算法利用痣的哪些功能将其归类于癌变症状或良性。结果,这也被成为深度学习的医疗版“黑箱子”问题。不同于传统的视觉软件,程序员可在深度学习领域对规则进行定义,算法可以找到规则本身,但经常无法留下线索用以解释它的决定。

     
 如果有一天,你突然发现身上的一颗痣变得有些奇怪,你会怎么做?虽然这可能是一个危险的信号,但很多人因为工作忙、去医院不便等种种原因,往往不会及时去检查。现在,人工智能为这个问题提供了更好的解决方案:在未来,我们或许可以在手机上下载一个APP,开个摄像头让机器医生帮我们看一看,这是不是皮肤癌的早期症状。

在中国,皮肤癌并不是癌症家族中特别瞩目的成员,这是因为黄种人的皮肤癌发病率要低于白种人。但在美国,皮肤癌却是最常见的癌症之一。每年约有540万美国人罹患皮肤癌。以黑色素瘤为例,如果在五年之内的早期阶段检测并接受治疗,生存率在97%左右;但在晚期阶段,存活率会剧降到14%。因而,早期筛查对皮肤癌患者来说生死攸关。

美国密歇根大学关注健康法律的学者尼克尔森·普莱斯(Nicholson
Price)说:“在黑箱子医疗领域,医生不知道到底发生了什么,因为没人知道,它本质上是不透明的。”普莱斯还称,这可能不会对医疗领域造成严重伤害。他将深度学习比作药物,只是人们不知道这种药物的效力源自何处。

     
 斯坦福大学一个联合研究团队开发出了一个皮肤癌诊断准确率媲美人类医生的人工智能,相关成果刊发为了1月底《自然》杂志的封面论文,题为《达到皮肤科医生水平的皮肤癌筛查深度神经网络》(Dermatologist-level
classification of skin cancer with deep neural
networks)。他们通过深度学习的方法,用近13万张痣、皮疹和其他皮肤病变的图像训练机器识别其中的皮肤癌症状,在与21位皮肤科医生的诊断结果进行对比后,他们发现这个深度神经网络的诊断准确率与人类医生不相上下,在91%以上。

一般情况下,来到医院或诊所后,医生会基于视觉诊断进行临床筛查,再对疑似病变部位依次进行皮肤镜检查、活体组织切片检查和病理学诊断。

以锂为例,它影响情绪的确切生物化学机制还不清楚,但这种药物已被批准用于治疗躁郁症。阿斯匹林也是被广泛使用的药物,但其背后的药理70多年来依然未曾解开。普莱斯表示,与它们相似,黑箱子问题不会给美国食品和药物管理局(FDA)造成影响,除了批准新药物,这个机构也会对软件进行监管,前提是其以治疗或预防疾病为目的开发出来的。

     
 在中国,皮肤癌并不是癌症家族中特别瞩目的成员,这是因为黄种人的皮肤癌发病率要低于白种人。但在美国,皮肤癌却是最常见的癌症之一。每年约有540万美国人罹患皮肤癌。以黑色素瘤为例,如果在五年之内的早期阶段检测并接受治疗,生存率在97%左右;但在晚期阶段,存活率会剧降到14%。因而,早期筛查对皮肤癌患者来说生死攸关。

医生使用皮肤镜进行检查。但由于各种各样的原因,很多人并不会及时为皮肤上出现的一些细小症状而跑一趟医院。因而,基于人工智能的家用便携式皮肤癌诊断设备将大大提高早期皮肤癌的筛查覆盖率,挽救更多人的生命。但是,癌症诊断,差之毫厘,谬以千里,人工智能能够胜任将黑色素瘤从普通的痣中筛选出来的任务?斯坦福大学这个联合研究团队的结论是:基于深度学习的机器医生诊断准确率十分惊人。

美国食品与药物管理局发表声明称,在过去20多年中,该机构已经批准许多图像分析应用,它们依赖于各种识别模式、机器学习以及计算机视觉技术。该机构还证实,我们会看到更多深度学习支持的医疗软件出现,并认为公司可以对他们的算法细节保密。

       
一般情况下,来到医院或诊所后,医生会基于视觉诊断进行临床筛查,再对疑似病变部位依次进行皮肤镜检查、活体组织切片检查和病理学诊断。医生使用皮肤镜进行检查。但由于各种各样的原因,很多人并不会及时为皮肤上出现的一些细小症状而跑一趟医院。因而,基于人工智能的家用便携式皮肤癌诊断设备将大大提高早期皮肤癌的筛查覆盖率,挽救更多人的生命。但是,癌症诊断,差之毫厘,谬以千里,人工智能能够胜任将黑色素瘤从普通的痣中筛选出来的任务?斯坦福大学这个联合研究团队的结论是:基于深度学习的机器医生诊断准确率十分惊人。“我们意识到这是可行的,机器不仅能做,而且能做得和人类一样好”,斯坦福人工智能实验室助理教授Sebastian
Thrun说道,“这时候我们的想法完全变了。我们说,‘瞧吧,这不仅仅是个学生作业,这可能有益于全人类’。”
这种视觉处理算法基于时下大热的深度学习,即通过大量的数据作为示例来训练机器完成某些特定任务。近来深度学习不仅在视觉处理方面大放异彩,也在其他不同的领域硕果累累,譬如谷歌(微博)的围棋AI阿尔法狗,就是在学习完3000万张人类棋谱后击败世界围棋冠军李世石的。在机器学习过程中,开发者不再需要对解题方法进行编码,而是任由计算机通过学习示例数据自己“摸索”出解法。具体到皮肤癌诊断这个案例中,就是研究者不再需要自己总结中皮肤癌在外观上的一些规律性特征来教会计算机,而是由它自己总结其中的模式。

“我们意识到这是可行的,机器不仅能做,而且能做得和人类一样好”,斯坦福人工智能实验室助理教授Sebastian
Thrun说道,“这时候我们的想法完全变了。我们说,‘瞧吧,这不仅仅是个学生作业,这可能有益于全人类’。”

此外,美国食品与药物管理局至少已经为一种深度学习算法开了绿灯。今年1月份,该机构批准了旧金山医疗影像公司Arterys合法出售其开发的软件。这种软件的算法DeepVentricle可分析心室内部轮廓核磁共振成像图像,计算出病人心脏能够容纳和泵出的血量。这种计算可在30秒内完成,而常规方式需要1个小时。

      以谷歌一个区别猫狗的算法为蓝本
。研发者们没有自己另起炉灶,而是以谷歌的一个能在128万张图像中识别1000种物体的算法为蓝本进行加工。谷歌的这个算法原本是用来区分喵星人和汪星人的,现在,研究者们需要训练它区别良性脂溢性角化病(benign
seborrheic keratosis)和角化细胞癌(keratinocyte
carcinomas)、普通的痣和恶性黑色素瘤(malignant melanomas)。

这种视觉处理算法基于时下大热的深度学习,即通过大量的数据作为示例来训练机器完成某些特定任务。近来深度学习不仅在视觉处理方面大放异彩,也在其他不同的领域硕果累累,譬如谷歌(微博)的围棋AI阿尔法狗,就是在学习完3000万张人类棋谱后击败世界围棋冠军李世石的。在机器学习过程中,开发者不再需要对解题方法进行编码,而是任由计算机通过学习示例数据自己“摸索”出解法。具体到皮肤癌诊断这个案例中,就是研究者不再需要自己总结中皮肤癌在外观上的一些规律性特征来教会计算机,而是由它自己总结其中的模式。

美国食品与药物管理局要求Arterys公司进行更大范围测试,以确保其算法结果符合医生诊断。该公司首席技术官约翰·塞利斯(John
Axerio-Cilies)说:“从统计学上,你需要证明你的算法安全有效,符合预期用途。”

     
 但是,在数据方面,研究团队面临的第一个问题就是并不存在一个现成可用的庞大皮肤癌数据库。所以,斯坦福人工智能实验室从互联网上收集数据,与斯坦福医学院进行合作,给这一大堆混乱的照片分类贴标签。这工作并不容易,毕竟,原始数据里的语言就有好几种,光把这些翻译统一就很耗时。

以谷歌一个区别猫狗的算法为蓝本

庞大需求

     
 接着,联合研究团队再一起对这锅大杂烩进行筛选。专业的皮肤科医生会使用皮肤镜,一种手持的显微镜,对相关部位的皮肤进行放大观察,形成的医学影像具有一些固定标准。但这里的大多数照片不是专业的医学影像,角度、尺寸和亮度五花八门。最后,他们选出了129450张皮肤病变图片,其中包含2032种不同的疾病。每张照片是作为一个带有相关疾病标签的像素输入进算法的。这样,研发者省去了许多前期的图像分组工作,大大提高了数据量。

研发者们没有自己另起炉灶,而是以谷歌的一个能在128万张图像中识别1000种物体的算法为蓝本进行加工。谷歌的这个算法原本是用来区分喵星人和汪星人的,现在,研究者们需要训练它区别良性脂溢性角化病(benign
seborrheic keratosis)和角化细胞癌(keratinocyte
carcinomas)、普通的痣和恶性黑色素瘤(malignant melanomas)。

为了训练自己的软件,由谷歌无人驾驶汽车团队前副总裁特隆领导的团队为其提供了129405张经过专家评估的皮肤图像。这些图像覆盖2032种疾病,其中1942张图像来自皮肤癌确诊患者。最终,在确定哪些痣可导致潜在癌变方面,这款软件战胜了21名人类皮肤病医生。

     
 经过训练后,研究者们使用由爱丁堡大学和国际皮肤影像合作项目(International
Skin Imaging Collaboration
Project)提供的高质量的、经活检证实的照片来检测机器的学习成果,照片涉及两种最常见、也最致命的皮肤癌:恶性黑色素瘤和角质形成细胞癌。21位人类皮肤科医生被要求观察其中的370多张图片,并对每一张作出判断:是要进一步进行活检或治疗,还是告诉病人一个好消息。

但是,在数据方面,研究团队面临的第一个问题就是并不存在一个现成可用的庞大皮肤癌数据库。所以,斯坦福人工智能实验室从互联网上收集数据,与斯坦福医学院进行合作,给这一大堆混乱的照片分类贴标签。这工作并不容易,毕竟,原始数据里的语言就有好几种,光把这些翻译统一就很耗时。

斯坦福大学皮肤病医生、研究作者罗伯特·诺沃亚(Robert
Novoa)说:“当皮肤科医生看到这种技术的潜力时,我想大多数人都会选择支持它。”诺沃亚与其他团队成员拒绝透露,他们是否打算商业化这款软件。

     
这个算法现在还需要依托一个计算机运行,但斯坦福的这个团队会努力把它缩小到可以在手机上装载的地步。他们觉得这种改装还是挺容易的,只是还需要更多实打实的临床检验。在不远的未来,也许人们手指轻轻一点,就可以进行靠谱的皮肤癌诊断。

接着,联合研究团队再一起对这锅大杂烩进行筛选。专业的皮肤科医生会使用皮肤镜,一种手持的显微镜,对相关部位的皮肤进行放大观察,形成的医学影像具有一些固定标准。但这里的大多数照片不是专业的医学影像,角度、尺寸和亮度五花八门。最后,他们选出了129450张皮肤病变图片,其中包含2032种不同的疾病。每张照片是作为一个带有相关疾病标签的像素输入进算法的。这样,研发者省去了许多前期的图像分组工作,大大提高了数据量。

Memorial Sloan
Kettering皮肤科医生、国际皮肤数字成像协会主席艾伦·哈尔珀恩(Allan
Halpern)表示:“任何有关医生即将因AI技术而失业的担忧都是杞人忧天。我认为算法不但不是威胁,反而还会大幅推动皮肤科服务的需求。”这是因为筛查测试阳性还需要活检。哈尔珀恩说,深度学习软件可在初级医疗领域占据一席之地,但如果要进行广泛的筛查,或通过消费应用进行,可能没有足够的皮肤科医生跟进。

     
 Thrun实验室的研究生Esteva说道,“当我想到智能手机强大的存在感后,我真是灵光一闪。未来每个人口袋里都会装着一个超级计算机。如果我们用它来筛查皮肤癌,或者其他疾病呢?“
 

澳门新葡萄京官网注册 3

塞利斯也说,公司可能被诱惑向消费者直接提供深度学习工具。举例来说,人们可能扫描自己身上的痣,看它们是否需要去看医生。有些非AI手机应用(比如Mole
Mapper)已经允许人们追踪可疑的痣,并随着时间推移对其变化进行记录。

       
诚然,深度学习这块土壤培植了太多可能性。斯坦福大学针对皮肤癌筛查的这个算法只是打开了通往新世界的一个小口子,在未来,基于深度学习的人工智能将在更广阔的医疗领域内与人类大夫们并肩作战。

图片样本:良性和恶性的上皮细胞/黑色素细胞/皮肤镜下的黑色素细胞。经过训练后,研究者们使用由爱丁堡大学和国际皮肤影像合作项目(International
Skin Imaging Collaboration
Project)提供的高质量的、经活检证实的照片来检测机器的学习成果,照片涉及两种最常见、也最致命的皮肤癌:恶性黑色素瘤和角质形成细胞癌。21位人类皮肤科医生被要求观察其中的370多张图片,并对每一张作出判断:是要进一步进行活检或治疗,还是告诉病人一个好消息。

可是哈尔珀恩表示,他不认为消费者已经准备好迎接这样的诊断系统,因为这些系统可能告诉他们,某个痣有5%的几率或50%的几率属于癌变。他说:“我们还不擅于利用这样的概率。”

在测试中,人工智能被要求完成三项诊断任务:鉴别角化细胞癌、鉴别黑色素瘤,以及使用皮肤镜图像对黑色素瘤进行分类。研究者通过建构敏感性(sensitivity)-特异性(specificity)曲线对算法的表现进行衡量。敏感性体现了算法正确识别恶性病变的能力,特异性体现了算法正确识别良性病变,即不误诊为癌症的能力。在所有三项任务中,该人工智能表现与人类皮肤科医生不相上下,敏感性达到91%。

稿源:网易科技

澳门新葡萄京官网注册 4

算法诊断不同数量的角化细胞和黑色素细胞图片时的敏感性,均在91%以上。除了媲美人类医生的诊断敏感性之外,该算法还有一大亮点,它的敏感性是可以调节的。研究者可以依据想要的诊断效果对敏感性进行调整。

未来的掌上医生

这个算法现在还需要依托一个计算机运行,但斯坦福的这个团队会努力把它缩小到可以在手机上装载的地步。他们觉得这种改装还是挺容易的,只是还需要更多实打实的临床检验。在不远的未来,也许人们手指轻轻一点,就可以进行靠谱的皮肤癌诊断。

Thrun实验室的研究生Esteva说道,“当我想到智能手机强大的存在感后,我真是灵光一闪。未来每个人口袋里都会装着一个超级计算机。如果我们用它来筛查皮肤癌,或者其他疾病呢?“

诚然,深度学习这块土壤培植了太多可能性。斯坦福大学针对皮肤癌筛查的这个算法只是打开了通往新世界的一个小口子,在未来,基于深度学习的人工智能将在更广阔的医疗领域内与人类大夫们并肩作战。