6 日,微软开源了其基于模型的机器学习框架
Infer.NET。项目地址:

出处:

Infer.NET机器学习翻译系列文章将进行连载,感兴趣的朋友请收藏或关注

澳门新葡萄京官网首页 1

阅读目录

           
本博客所有文章分类的总目录:

Infer.NET
是一个在图形模型中运行贝叶斯推理的框架,它也可以用于概率编程。可以使用
Infer.NET
来解决许多不同类型的机器学习问题,包括分类、推荐或集群等标准问题与针对特定领域问题的定制解决方案。Infer.NET
目前已被广泛应用于各个领域,包括信息检索、生物信息学、流行病学、视觉以及许多其它领域。

  • 1.开源综合类
  • 2.开源.NET平台非综合类
  • 3.其他资源与技术博客
  • 4.我的100篇博客之路

微软Infer.NET机器学习组件文章目录:

Infer.NET 项目是英国剑桥微软研究中心的一个团队于 2004
年启动的,在那之后于 2008 年将其发布用于学术用途。在微软的 AI
新世界中,该技术已经发展成为机器学习引擎并进入 Office 和 Azure 以及 Xbox
上的游戏应用程序。

 
 接触机器学习1年多了,由于只会用C#堆代码,所以只关注.NET平台的资源,一边积累,一边收集,一边学习,所以在本站第101篇博客到来之际,分享给大家。部分用过的
,会有稍微详细点的说明,其他没用过的,也是我关注的,说不定以后会用上。机器学习并不等于大数据或者数据挖掘,还有有些区别,有些东西可以用来处理大数据的问题或者数据挖掘的问题,他们之间也是有部分想通的,所以这些组件不仅仅可以用于机器学习,也可以用于数据挖掘相关的。

关于本文档的说明

  本文档基于Infer.NET 2.6对Infer.NET User Guide进行中文翻译,但进行了若干简化和提炼,按照原网站的思路进行,但不局限与其顺序。

  欢迎传播分享,必须保持原作者的信息,但禁止将该文档直接用于商业盈利。

  本人正在研究基于Infer.NET组件,并计划将其应用于实际的预测之中,该组件功能强大,封装很完善,但也有很多难以理解的地方,同时官方也给出了大量的例子,限于个人精力有限,更新时间较慢,也希望有兴趣的朋友一起来完成该项工作。

     Email:asxinyu@qq.com

  本文章地址: http://www.cnblogs.com/asxinyu/p/4252769.html

采用基于模型的方法进行机器学习,开发人员为框架提供模型,然后框架直接从提供的模型中生成机器学习算法。许多学习模型要求程序员将他们的模型映射到预先存在的学习算法,然而,Infer.NET
却是反过来的一个过程,这是 Infer.NET
的优势。开发者认为随着人工智能软件变得越来越流行,解释系统行为变得越来越重要,用户应该可以在给定模型的情况下找出系统以某种方式表现的原因。

  按照功能把资源分为3个部分,开源综合与非综合类,以及其他网站博客等资料。都是能够在.NET平台使用的。谢谢大家支持,这些组件我日后肯定也会研究其使用,到时候有心得再分享上来。如果有兴趣,可以关注本博客。

1.基本介绍

  Infer.NET是微软剑桥研究院基于.NET平台开发的一款机器推理组件,官方网站:

  该组件的采用的是Microsoft Research License Agreement
授权,Non-Commercial Use Only,除了商业使用,都可以,自己看着办。

     
本章节的英文原文为,在这里。

Infer.NET 是跨平台的,支持 .NET Framework 4.6.1、.NET Core 2.0 和 Mono
5.0,Windows 用户可以在 Visual Studio 2017 中使用,而 macOS 和 Linux
人员可以使用命令行选项将其整合到所选择的代码管理器中。

本文原文地址:

1.1 Infer.NET是什么?

Infer.NET是一个概率图模型中(graphical models)用于运行贝叶斯推理机(Bayesian inference)的框架。如果对概率图模型或者贝叶斯推理的意义不了解,你可以参考一下相关资源文件,在Resources and References page页面。Infer.NET为各种应用程序所需要推理提供了先进的消息传递算法和统计程序。Infer.NET 与现有的一些推理软件有下列区别:

(文/开源中国)    

回到目录

澳门新葡萄京官网首页,1.1.1 丰富的建模语言

支持单变量和多变量变量、也支持连续型和离散型变量。可以使用大量的各种因素进行建模,包括算术运算、线性代数、范围和积极约束、布尔操作符等等。支持不同模型的组合,以及不同类型的组合。【附:Infer.NET的内部使用了The model specification language (MSL) 建模语言,由于该组件不允许用于商业,因此源代码也没有全部开发,无法也无法搞清楚其原理】

1.开源综合类

1.1.2 多种推理算法

内置了多种推理算法,如Expectation Propagation, Belief Propagation (a special case of EP), Variational Message Passing and Gibbs sampling.这几个专业词汇暂时还不懂意义。

1.1 AForge.NET

  AForge.NET是一个专门为开发者和研究者基于C#框架设计的,他包括计算机视觉与人工智能,图像处理,神经网络,遗传算法,机器学习,模糊系统,机器人控制等领域。这个框架由一系列的类库组成。主要包括有:

AForge.Imaging —— 一些日常的图像处理和过滤器
AForge.Vision —— 计算机视觉应用类库
AForge.Neuro —— 神经网络计算库AForge.Genetic -进化算法编程库
AForge.MachineLearning —— 机器学习类库
AForge.Robotics —— 提供一些机器学习的工具类库
AForge.Video —— 一系列的视频处理类库
AForge.Fuzzy —— 模糊推理系统类库
AForge.Controls—— 图像,三维,图表显示控件

来自:

官方网站

  我个人认为这个是.NET平台机器学习和数据挖掘发展时间最长,最好,最全面的开源.NET组件之一。博客园有很多园友写过专门的使用文章。我本人也只是关注,还没有使用,因为方向和处理的问题不一样,暂时还没有实际应用。源代码,案例等都非常全面。

1.1.3 为大规模推理而设计

现有的在大多数推理程序执行过程中的开销,减慢了推理过程。而Infer.NET将推理模型编译为能够独立执行的源代码,不需要额外的开销。它也可以直接集成到您的应用程序。此外,也可以查看,分步执行源代码,或者使用标准的开发工具进行修改。

1.2 Accord.NET Framework

    Accord.NET
Framework是在AForge.NET基础上封装和进一步开发来的。功能也很强大,因为AForge.NET更注重与一些底层和广度,而Accord.NET
Framework更注重与机器学习这个专业,在其基础上提供了更多统计分析和处理函数,包括图像处理和计算机视觉算法,所以侧重点不同,但都非常有用。    

官方网站

1.1.4 用户可以进行扩展

概率分布、因素、消息操作和推理算法都可以由用户添加。Infer.NET使用一个插件架构,使其开放性,适应性更强。而内置库支持多种模型和推理操作;但总会有特殊的情况,需要新的因素或者分布类型或者算法,这种情况下,用户可以编写自定义代码,自由与内置功能进行混合,以减少一些额外的工作。

可以看看一个简单使用Infer.NET的例子。这个文档中的示例代码是C#,但Infer.NET支持.NET平台的所有语言。 

1.3 Math.NET

  不管是机器学习还是数据挖掘,都与数学离不开关系,既然是在.NET平台,那么这个组件以后你也许用得上。Math.NET是.NET平台下最全面的数学计算组件之一,基础功能非常完善。我的博客有对这个组件的详细研究: 。当然更多的功能还得大家自己使用中发掘,毕竟提供了源代码。Math.NET初衷是开源建立一个稳定并持续维护的先进的基础数学工具箱,以满足.NET开发者的日常需求。目前该组件主要分为以下几个子项目,该组件同时也支持Mono,而且支持的平台也非常广泛。Math.NET Numerics是核心功能是数值计算。主要是提供日常科学工程计算相关的算法,包括一些特殊函数,线性代数,概率论,随机函数,微积分,插值,最优化等相关计算功能。详细的介绍和使用可以参考本站的菜单“Math.NET”,查看目录。

官方网站

1.2 安装文件夹

Infer.NET通过Zip压缩包进行发行,解压后,可以看到如下的文件夹目录:

“Bin,Learners,Source(Distributions,Factors,Wrappers),Samples(C#,F#)” 

Bin文件夹包含了Infer.NET的dll文件:

1.Infer.Compiler.dll是一个使用Infer.NET API编写的将模型描述转换为推理代码的编译器;

2.Infer.Runtime.dll是一个执行推理代码的程序集

一般开发过程中只需要引用这两个dll,但在某些部署场景你可能只需要Infer.Runtime.dll。

Infer.FSharp.dll是为了标准的F#语言调用所做的一个封装。【不懂F#,也没有去深究】

Bin文件夹还包括了一些例子的生成文件,以及几个项目的生成文件。

例子文件夹中有2个完整项目的源代码,1个是贝叶斯分类器,1个是推荐系统【比较复杂,还没开始研究】

1.4 Infer.NET

  好吧,上面说的那些很强大,强大一方面是说包括的面广,一方面是代码,注释,资源,案例也很完善。如果说上面那些是大炮,那么我认为这个Infer.NET就是战斗机,零零散散接触和研究,以及翻译它的文档代码已经有5个月了,时间越久,越感觉到它的火力之强大。我博客已经发表了2篇翻译的文档:,请关注。

  Infer.NET是微软剑桥研究院基于.NET平台开发的一款机器推理组件,该组件的采用的是Microsoft
Research License Agreement 授权,Non-Commercial Use
Only.Infer.NET是一个概率图模型中(graphical
models)用于运行贝叶斯推理机(Bayesian
inference)的框架。如果对概率图模型或者贝叶斯推理的意义不了解,你可以参考一下相关资源文件,在Resources
and References
page页面。Infer.NET为各种应用程序所需要推理提供了先进的消息传递算法和统计程序。Infer.NET更关注与概率图编程或者贝叶斯理论的相关应用。这个随机因素和不确定世界中的很多问题,都可以适用,所以他的强大一方面是专注,另一方面是提供的建模语言。与其他的组件不同,其他组件是算法级,而Infer.NET是建模级别,附带了各种通用和常见的推理算法。可以通过简单的代码来创建模型,按照微软的话说是MSL建模语言,这也是这个组件让我肃然起敬的地方,估计也只有微软的研究人员才会想到这么干一劳永逸的事情。

官方网站

1.3 一个简单的例子

下面是一个使用Infer.NET计算抛掷2枚硬币,结果都是正面的概率的例子,代码如下:

1 Variable<bool> firstCoin = Variable.Bernoulli(0.5);
2 Variable<bool> secondCoin = Variable.Bernoulli(0.5);
3 Variable<bool> bothHeads = firstCoin & secondCoin;
4 InferenceEngine ie = new InferenceEngine();
5 Console.WriteLine("Probability both coins are heads: "+ie.Infer(bothHeads));

程序输出为:

1 Probability both coins are heads: Bernoulli(0.25)

上述结果说明2面同时为正面的概率为0.25。上述简单的例子,包括了使用Infer.NET编程的几个关键步骤。

1.定义概率模型:所有Infer.NET程序都需要明确定义的概率模型。上述程序的前3行就是定义3个随机变量。

2.创建推理引擎(推理机):所有的推理都是使用推理引擎进行的,在使用之前,必须创建和配置推理引擎。如第四行,使用默认的推理算法创建的推理引擎。

3.执行推理查询:给定一个推理引擎,就可以使用Infer()方法来查询变量的边际分布。例子的最后一行中,引擎就去推理2个都是正面的边际分布。你还可以在这里找到更多“运行推理”的细节。

1.5 numl

  另外一个小巧的,包含比较多的机器学习算法类库,支持监督式和非监督式学习。支持很多常见的机器学习算法,文档资源还不错。包括Cluster,KMeans,PCA,DecisionTree,KNN,NaiveBayes,NeuralNetwork等学习算法,内容也非常丰富,功能强大,同时也包括一些数值计算的实现。这个组件个人认为没有以上的那么复杂,结构小巧合理,代码也很优雅。看看下面这段代码,很快就可以构建一个决策树学习器进行预测:

澳门新葡萄京官网首页 2

 1 var generator = new DecisionTreeGenerator();
 2 generator.Descriptor = Descriptor.Create<Tennis>();
 3 generator.SetHint(false);
 4 
 5 Tennis[] tennis = TennisData.GetData();
 6 
 7 var learned = Learner.Learn(tennis, 0.80, 1000, generator);
 8 
 9 IModel model = learned.Model;
10 double accuracy = learned.Accuracy;
11 
12 Tennis t = new Tennis
13 {
14     Outlook = Outlook.Sunny,
15     Temperature = Temperature.High,
16     Windy = false
17 };
18 
19 Tennis predictedVal = model.Predict(t);

澳门新葡萄京官网首页 3

  numl的入门案例和文档比较全面,如果本身对算法比较了解,熟悉C#,那入门应该不是问题。并且可以通过组件本身构建和解决更加复杂的问题。

官方网站

1.4 Infer.NET工作原理

下图是Infer.NET的推理过程:

澳门新葡萄京官网首页 4

 过程如下:

1.首先用户创建1个 模型定义,并声明一些和模型相关推理查询需求;

2.用户将模型定义和推理查询传递给模型编译器,后者使用指定的推理算法,创建需要执行这些查询模型的源代码。这个源代码可以写入一个文件,如果需要,也可以直接使用。

3.C#编译器编译源代码来创建一个编译过的算法。这可以手动执行,或通过推断方法自动执行。

4.使用一组观测值(数据),推理引擎根据用户指定的设置,执行编译算法,以便产生推理查询要求的边际分布。可以对观测值重复不同的设置,而不需要重新编译算法。

本文章原始地址: http://www.cnblogs.com/asxinyu/p/4252769.html

1.6 Alglib

  ALGLIB是一个跨平台的数值分析和数据处理函数库,该函数库包括开源版本和商业版本。它支持多种编程语言,如C++,C#,Pascal,VBA等,可以在多个操作系统平台上运行,如:Windows,Linux和Solaris。ALGLIB有以下特点:

(1)线性代数(包括矩阵分析);
(2)方程求解(线性和非线性);
(3)插值;
(4)最优化;
(5)快速傅里叶变换;
(6)数值积分;
(7)线性和非线性最小二乘拟合;
(8)常微分方程求解;
(9)特殊函数;
(10)统计(描述统计、假设检验);
(11)数据分析(分类、回归、神经网络);

官方网站

回到目录

1.5 Frequently Asked Questions  

  常见问题,比较简单,暂时没有翻译的必要,地址在这里。

2.开源.NET平台非综合类

1.6 Resources and References

  常见问题,比较简单,暂时没有翻译的必要,地址在这里。

2.1 Adaboost算法

1.

2.

2.资源下载

  这里提供Infer.NET
2.6的下载,包括了例子和基础的源码。下载地址:链接:
密码:12wz

  如果本文章资源下载不了,或者文章显示有问题,请参考 本文原文地址:

  另外本文的翻译电子版,以及该项目相关的翻译资源,将在最终完成后逐步开放,请关注本博客。

      翻译很累,写篇文章也费时间,兄台顺手点个推荐吧。

2.2 Apriori算法

1.

2.

2.3 PageRank算法

2.4 NativeBayes(朴素贝叶斯)算法

1.
2.
3.
4.

2.5 kmeans算法

回到目录

3.其他资源与技术博客

【资源】108个大数据文档PDF开放下载-整理后打包下载,虽然是大数据的相关资料,主要是PPT等,但也有和机器学习有一点关系,需要的看看;

白话贝叶斯理论及在足球比赛结果预测中的应用和C#实现【附资料】 里面有贝叶斯相关的论文资料,文章本身对朴素贝叶斯的原理也介绍得非常清楚;

数据挖掘领域十大经典算法初探 

机器学习10大经典算法

支持向量机通俗导论(理解SVM的三层境界)

从决策树学习谈到贝叶斯分类算法、EM、HMM

自然语言处理博客
,包含的内容非常多,可能理论性有点强 

西北工业大学博导聂飞平博客:

一个机器学习数据挖掘的博客,有不少资源链接:

 一个机器学习资源集中平台    

算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian
classification)

最大熵模型介绍

概率图模型

博客园Bobby0322的博客: 中的商务智能与数据挖掘应用系列文章:

  1. 《BI那点儿事》数据挖掘初探
  2. 《BI那点儿事》数据挖掘的主要方法
  3. 《BI那点儿事》浅析十三种常用的数据挖掘的技术
  4. 《BI那点儿事》数据挖掘与相关领域的关系
  5. 《BI那点儿事》Microsoft
    关联算法
  6. 《BI那点儿事》Microsoft
    聚类分析算法
  7. 《BI那点儿事》Microsoft
    聚类分析算法——三国人物身份划分
  8. 《BI那点儿事》Microsoft
    决策树算法
  9. 《BI那点儿事》Microsoft
    决策树算法——找出三国武将特性分布,献给广大的三国爱好者们
  10. 《BI那点儿事》Microsoft
    线性回归算法
  11. 《BI那点儿事》Microsoft
    逻辑回归算法
  12. 《BI那点儿事》Microsoft
    逻辑回归算法——预测股票的涨跌
  13. 《BI那点儿事》Microsoft Naive Bayes
    算法
  14. 《BI那点儿事》Microsoft Naive Bayes
    算法——三国人物身份划分
  15. 《BI那点儿事》Microsoft
    神经网络算法
  16. 《BI那点儿事》Microsoft
    顺序分析和聚类分析算法
  17. 《BI那点儿事》Microsoft
    时序算法
  18. 《BI那点儿事》Microsoft
    时序算法——验证神奇的斐波那契数列
  19. 《BI那点儿事》数据挖掘各类算法——准确性验证 

回到目录

4.我的100篇博客之路

  从2009年8月1日注册博客园开始,已经有5年多的时间了。这是博客的第100篇正式随笔文章。在2015年元旦的时候,看着自己的博客很久没有更新,只有40多篇文章,然后列出了一个写作计划,初期是至少完成高质量的文章50篇左右。而到现在只有4个月,没想到我几乎完成了全年的目标。当然发表的50多篇文章中,我认为高质量和有意义的可能只有40篇,但丝毫没关系,至少还有很多时间。这些文章是对自己经历和知识的总结,也是一个提高。在这100篇博客里程碑到来的时候,我简单的回顾了一下这100篇文章。

第1篇首日浏览量到1000的文章:

  XCode使用记录—使用XCode自动向数据库插入测试数据(2012-04-25
09:11)  

第1篇首日浏览量到3000的文章:

  拥有自己的代码生成器—Newlife.XCode模板编写教程 (2012-05-11
08:35)   

第1篇 上博客园头条的文章:

  挑战ORM性能——Newlife.XCode下500万sqlite数据库的分页(2012-08-22
12:22)  

第1篇 推荐超过60的文章:

  【原创】开源Word读写组件DocX介绍与入门 (2013-02-22
10:35)  24

第1篇 推荐超过80的文章:

  【5.1送礼】国内第一部Matlab和C#.Net混合编程视频教程【免费】 (2014-04-29
08:02)

第1篇 总浏览量超1.6万的文章:

  【吐槽】VS2012的安装项目只能用InstallShield Limited
Edition (2013-09-07
11:20)

  在所有的100篇随笔中,有13篇是目录和链接汇总,不能算是写的随笔,还有9篇文章是刚开始来博客园的时候,还在学习,技术含量不高。但我也没删除,毕竟是一段历史。加上有2篇关于比特币和源码的文章,准确的说不是我写的,大部分是@大石头的内容,还有2篇资源和百度吐槽是很随意临时写的,根本没打算发表在首页,只是做一个记录。所以实际比较有技术一点的文章或者心得数量是73篇。这73篇文章中:

在个人认为还不错的文章中有至少15
篇上了博客园头条
(包括“最多推荐”和“最多评论”以及“编辑推荐”)

1.白话贝叶斯理论及在足球比赛结果预测中的应用和C#实现【附资料】

2.你用过这种奇葩的C#注释吗?如何看待 (2015-04-17
10:04)

3.【原创】C#玩高频数字彩快3的一点体会 (2015-04-11
09:03)

4.【踩坑经历】一次Asp.NET小网站部署踩坑和解决经历 (2015-04-01
06:10)

5.【分享】博客美化(4)为博客添加一个智能的文章推荐插件 (2015-03-24
07:55)

6.【原创】Newlife.XCode的常见功能使用(一)查询与数据初始化 (2015-01-26
08:52)

7.【原创】开源Math.NET基础数学类库使用(13)C#实现其他随机数生成器 (2015-03-18
08:32)

8.【反传销】传销故事总结—如何尽可能保护自身和家人安全 (2015-03-09
07:37)

9.【反传销】春节一个短暂误入传销和脱身的真实故事以及对技术的思考 (2015-03-03
06:10)

10.App乱世,3721离我们有多远 (2015-02-10
09:24)

11.【原创】开源Word读写组件DocX介绍与入门 (2013-02-22
10:35)

12.【原创】C#开源轻量级对象数据库NDatabase介绍 (2013-02-20
09:35)

13.【原创】.NET开源压缩组件介绍与入门 (2013-03-05
07:59)

14.【5.1送礼】国内第一部Matlab和C#.Net混合编程视频教程【免费】 (2014-04-29
08:02)

 另外还有一篇文章被博客园作为编辑推荐文章:

15.【原创】Matlab.NET混合编程技巧之直接调用Matlab内置函数  

 
  总的来说,文章是非常高效和得到大家的认可的,虽然技术含量不是特别高级,但可能基础的技术更多的能引起共鸣吧。我想说的是,每一篇文章都是经过很用心的编辑和写出来的,结果也是非常理想的,得到了很多人的支持和理解,所以才有了如此高效的访问量和推荐以及评论。


如果您觉得阅读本文对您有帮助,请点一下“推荐”按钮,您的“推荐”将是我最大的写作动力!欢迎各位转载,但是未经作者本人同意,转载文章之后必须在文章页面明显位置给出作者和原文连接,否则保留追究法律责任的权利。

.NET数据挖掘与机器学习,作者博客: http://www.cnblogs.com/asxinyu

E-mail:1287263703@qq.com